

Flask-BabelPlus

Flask-BabelPlus is an extension to Flask [http://flask.pocoo.org/] that adds i18n and l10n support to
any Flask application with the help of babel [http://babel.edgewall.org/], pytz [http://pytz.sourceforge.net/] and
speaklater [http://pypi.python.org/pypi/speaklater]. It has builtin support for date formatting with timezone
support as well as a very simple and friendly interface to gettext [https://docs.python.org/3/library/gettext.html#module-gettext]
translations.

Installation

Install the extension with one of the following commands:

$ easy_install Flask-BabelPlus

or alternatively if you have pip installed:

$ pip install Flask-BabelPlus

Please note that Flask-BabelPlus requires Jinja 2.5. If you are using an
older version you will have to upgrade or disable the Jinja support.

Configuration

To get started all you need to do is to instanciate a Babel
object after configuring the application:

from flask import Flask
from flask_babelplus import Babel

app = Flask(__name__)
app.config.from_pyfile('mysettings.cfg')
babel = Babel(app)

The main difference from Flask-BabelEx [https://github.com/mrjoes/flask-babelex] is, that you can configure
Flask-BabelPlus when using the factory method of initializing extensions:

Flask-BabelPlus
babel.init_app(app=app, default_domain=FlaskBBDomain(app))

The babel object itself can be used to configure the babel support
further. Babel has two configuration values that can be used to change
some internal defaults:

	BABEL_DEFAULT_LOCALE

	The default locale to use if no locale
selector is registered. This defaults
to 'en'.

	BABEL_DEFAULT_TIMEZONE

	The timezone to use for user facing dates.
This defaults to 'UTC' which also is the
timezone your application must use internally.

For more complex applications you might want to have multiple applications
for different users which is where selector functions come in handy. The
first time the babel extension needs the locale (language code) of the
current user it will call a localeselector() function, and
the first time the timezone is needed it will call a
timezoneselector() function.

If any of these methods return None the extension will automatically
fall back to what’s in the config. Furthermore for efficiency that
function is called only once and the return value then cached. If you
need to switch the language between a request, you can refresh() the
cache.

Example selector functions:

from flask import g, request

@babel.localeselector
def get_locale():
 # if a user is logged in, use the locale from the user settings
 user = getattr(g, 'user', None)
 if user is not None:
 return user.locale
 # otherwise try to guess the language from the user accept
 # header the browser transmits. We support de/fr/en in this
 # example. The best match wins.
 return request.accept_languages.best_match(['de', 'fr', 'en'])

@babel.timezoneselector
def get_timezone():
 user = getattr(g, 'user', None)
 if user is not None:
 return user.timezone

The example above assumes that the current user is stored on the
flask.g [https://flask.palletsprojects.com/en/1.1.x/api/#flask.g] object.

Formatting Dates

To format dates you can use the format_datetime(),
format_date(), format_time() and format_timedelta()
functions. They all accept a datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] (or
datetime.date [https://docs.python.org/3/library/datetime.html#datetime.date], datetime.time [https://docs.python.org/3/library/datetime.html#datetime.time] and
datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]) object as first parameter and then optionally
a format string. The application should use naive datetime objects
internally that use UTC as timezone. On formatting it will automatically
convert into the user’s timezone in case it differs from UTC.

To play with the date formatting from the console, you can use the
test_request_context() [https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask.test_request_context] method:

>>> app.test_request_context().push()

Here some examples:

>>> from flask_babelplus import format_datetime
>>> from datetime import datetime
>>> format_datetime(datetime(1987, 3, 5, 17, 12))
u'Mar 5, 1987 5:12:00 PM'
>>> format_datetime(datetime(1987, 3, 5, 17, 12), 'full')
u'Thursday, March 5, 1987 5:12:00 PM World (GMT) Time'
>>> format_datetime(datetime(1987, 3, 5, 17, 12), 'short')
u'3/5/87 5:12 PM'
>>> format_datetime(datetime(1987, 3, 5, 17, 12), 'dd mm yyy')
u'05 12 1987'
>>> format_datetime(datetime(1987, 3, 5, 17, 12), 'dd mm yyyy')
u'05 12 1987'

And again with a different language:

>>> app.config['BABEL_DEFAULT_LOCALE'] = 'de'
>>> from flask_babelplus import refresh; refresh()
>>> format_datetime(datetime(1987, 3, 5, 17, 12), 'EEEE, d. MMMM yyyy H:mm')
u'Donnerstag, 5. M\xe4rz 1987 17:12'

For more format examples head over to the babel [http://babel.edgewall.org/] documentation.

Using Translations

The other big part next to date formatting are translations. For that,
Flask uses gettext [https://docs.python.org/3/library/gettext.html#module-gettext] together with Babel. The idea of gettext is
that you can mark certain strings as translatable and a tool will pick all
those up, collect them in a separate file for you to translate. At
runtime the original strings (which should be English) will be replaced by
the language you selected.

There are two functions responsible for translating: gettext() and
ngettext(). The first to translate singular strings and the second
to translate strings that might become plural. Here some examples:

from flask_babelplus import gettext, ngettext

gettext(u'A simple string')
gettext(u'Value: %(value)s', value=42)
ngettext(u'%(num)s Apple', u'%(num)s Apples', number_of_apples)

Additionally if you want to use constant strings somewhere in your
application and define them outside of a request, you can use a lazy
strings. Lazy strings will not be evaluated until they are actually used.
To use such a lazy string, use the lazy_gettext() function:

from flask_babelplus import lazy_gettext

class MyForm(formlibrary.FormBase):
 success_message = lazy_gettext(u'The form was successfully saved.')

So how does Flask-BabelPlus find the translations? Well first you have to
create some. Here is how you do it:

Translating Applications

First you need to mark all the strings you want to translate in your
application with gettext() or ngettext(). After that, it’s
time to create a .pot file. A .pot file contains all the strings
and is the template for a .po file which contains the translated
strings. Babel can do all that for you.

First of all you have to get into the folder where you have your
application and create a mapping file. For typical Flask applications, this
is what you want in there:

[python: **.py]
[jinja2: **/templates/**.html]
extensions=jinja2.ext.autoescape,jinja2.ext.with_

Save it as babel.cfg or something similar next to your application.
Then it’s time to run the pybabel command that comes with Babel to
extract your strings:

$ pybabel extract -F babel.cfg -o messages.pot .

If you are using the lazy_gettext() function you should tell pybabel
that it should also look for such function calls:

$ pybabel extract -F babel.cfg -k lazy_gettext -o messages.pot .

This will use the mapping from the babel.cfg file and store the
generated template in messages.pot. Now we can create the first
translation. For example to translate to German use this command:

$ pybabel init -i messages.pot -d translations -l de

-d translations tells pybabel to store the translations in this
folder. This is where Flask-BabelPlus will look for translations. Put it
next to your template folder.

Now edit the translations/de/LC_MESSAGES/messages.po file as needed.
Check out some gettext tutorials if you feel lost.

To compile the translations for use, pybabel helps again:

$ pybabel compile -d translations

What if the strings change? Create a new messages.pot like above and
then let pybabel merge the changes:

$ pybabel update -i messages.pot -d translations

Afterwards some strings might be marked as fuzzy (where it tried to figure
out if a translation matched a changed key). If you have fuzzy entries,
make sure to check them by hand and remove the fuzzy flag before
compiling.

Flask-BabelPlus looks for message catalogs in translations directory
which should be located under Flask application directory. Default
domain is “messages”.

For example, if you want to have translations for German, Spanish and French,
directory structure should look like this:

translations/de/LC_MESSAGES/messages.mo
translations/sp/LC_MESSAGES/messages.mo
translations/fr/LC_MESSAGES/messages.mo

Translation Domains

By default, Flask-BabelPlus will use “messages” domain, which will make it use translations
from the messages.mo file. It is not very convenient for third-party Flask extensions,
which might want to localize themselves without requiring user to merge their translations
into “messages” domain.

Flask-BabelPlus allows extension developers to specify which translation domain to
use:

from flask_babelplus import Domain

mydomain = Domain(domain='myext')

mydomain.lazy_gettext('Hello World!')

Domain contains all gettext-related methods (gettext(),
ngettext(), etc).

In previous example, localizations will be read from the myext.mo files, but
they have to be located in translations directory under users Flask application.
If extension is distributed with the localizations, it is possible to specify
their location:

from flask_babelplus import Domain

from flask_myext import translations
mydomain = Domain(translations.__path__[0])

mydomain will look for translations in extension directory with default (messages)
domain.

It is also possible to change the translation domain used by default,
either for each app or per request.

To set the Domain that will be used in an app, pass it to
Babel on initialization:

from flask import Flask
from flask_babelplus import Babel, Domain

app = Flask(__name__)
domain = Domain(domain='myext')
babel = Babel(app, default_domain=domain)

Translations will then come from the myext.mo files by default.

To change the default domain in a request context, call the
as_default() method from within the request context:

from flask import Flask
from flask_babelplus import Babel, Domain, gettext

app = Flask(__name__)
domain = Domain(domain='myext')
babel = Babel(app)

@app.route('/path')
def demopage():
 domain.as_default()

 return gettext('Hello World!')

Hello World! will get translated using the myext.mo files, but
other requests will use the default messages.mo. Note that a
Babel must be initialized for the app for translations to
work at all.

Troubleshooting

On Snow Leopard pybabel will most likely fail with an exception. If this
happens, check if this command outputs UTF-8:

$ echo $LC_CTYPE
UTF-8

This is a OS X bug unfortunately. To fix it, put the following lines into
your ~/.profile file:

export LC_CTYPE=en_US.utf-8

Then restart your terminal.

API

This part of the documentation documents each and every public class or
function from Flask-BabelPlus.

Configuration

	
class flask_babelplus.Babel(app=None, **kwargs)

	Central controller class that can be used to configure how
Flask-Babel behaves. Each application that wants to use Flask-Babel
has to create, or run init_app() on, an instance of this class
after the configuration was initialized.

	
default_locale

	The default locale from the configuration as instance of a
babel.Locale object.

	
default_timezone

	The default timezone from the configuration as instance of a
pytz.timezone object.

	
init_app(app, default_locale='en', default_timezone='UTC', date_formats=None, configure_jinja=True, default_domain=None)

	Initializes the Flask-BabelPlus extension.

	Parameters

	
	app – The Flask application.

	default_locale – The default locale which should be used.
Defaults to ‘en’.

	default_timezone – The default timezone. Defaults to ‘UTC’.

	date_formats – A mapping of Babel datetime format strings

	configure_jinja – If set to True some convenient jinja2
filters are being added.

	default_domain – The default translation domain.

	
list_translations()

	Returns a list of all the locales translations exist for. The
list returned will be filled with actual locale objects and not just
strings.

New in version 0.6.

	
load_locale(locale)

	Load locale by name and cache it. Returns instance of a
babel.Locale object.

	
localeselector(f)

	Registers a callback function for locale selection. The default
behaves as if a function was registered that returns None all the
time. If None is returned, the locale falls back to the one from
the configuration.

This has to return the locale as string (eg: 'de_AT', ‘’en_US’‘)

	
timezoneselector(f)

	Registers a callback function for timezone selection. The default
behaves as if a function was registered that returns None all the
time. If None is returned, the timezone falls back to the one from
the configuration.

This has to return the timezone as string (eg: 'Europe/Vienna')

Context Functions

	
flask_babelplus.get_locale()

	Returns the locale that should be used for this request as
babel.Locale object. This returns None if used outside of
a request.

	
flask_babelplus.get_timezone()

	Returns the timezone that should be used for this request as
pytz.timezone object. This returns None if used outside of
a request.

Translation domains

	
class flask_babelplus.Domain(dirname=None, domain='messages')

	Localization domain. By default it will look for tranlations in the
Flask application directory and “messages” domain - all message
catalogs should be called messages.mo.

	
as_default()

	Set this domain as the default one for the current request

	
get_translations()

	Returns the correct gettext translations that should be used for
this request. This will never fail and return a dummy translation
object if used outside of the request or if a translation cannot be
found.

	
get_translations_cache()

	Returns a dictionary-like object for translation caching

	
get_translations_path(app)

	Returns the translations directory path. Override if you want
to implement custom behavior.

	
gettext(string, **variables)

	Translates a string with the current locale and passes in the
given keyword arguments as mapping to a string formatting string.

gettext(u'Hello World!')
gettext(u'Hello %(name)s!', name='World')

	
lazy_gettext(string, **variables)

	Like gettext() but the string returned is lazy which means
it will be translated when it is used as an actual string.

Example:

hello = lazy_gettext(u'Hello World')

@app.route('/')
def index():
 return unicode(hello)

	
lazy_pgettext(context, string, **variables)

	Like pgettext() but the string returned is lazy which means
it will be translated when it is used as an actual string.

New in version 0.7.

	
ngettext(singular, plural, num, **variables)

	Translates a string with the current locale and passes in the
given keyword arguments as mapping to a string formatting string.
The num parameter is used to dispatch between singular and various
plural forms of the message. It is available in the format string
as %(num)d or %(num)s. The source language should be
English or a similar language which only has one plural form.

ngettext(u'%(num)d Apple', u'%(num)d Apples', num=len(apples))

	
npgettext(context, singular, plural, num, **variables)

	Like ngettext() but with a context.

New in version 0.7.

	
pgettext(context, string, **variables)

	Like gettext() but with a context.

Gettext uses the msgctxt notation to distinguish different
contexts for the same msgid

For example:

pgettext(u'Button label', 'Log in')

Learn more about contexts here:
https://www.gnu.org/software/gettext/manual/html_node/Contexts.html

New in version 0.7.

Datetime Functions

	
flask_babelplus.to_user_timezone(datetime)

	Convert a datetime object to the user’s timezone. This automatically
happens on all date formatting unless rebasing is disabled. If you need
to convert a datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] object at any time to the user’s
timezone (as returned by get_timezone() this function can be used).

	
flask_babelplus.to_utc(datetime)

	Convert a datetime object to UTC and drop tzinfo. This is the
opposite operation to to_user_timezone().

	
flask_babelplus.format_datetime(datetime=None, format=None, rebase=True)

	Return a date formatted according to the given pattern. If no
datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] object is passed, the current time is
assumed. By default rebasing happens which causes the object to
be converted to the users’s timezone (as returned by
to_user_timezone()). This function formats both date and
time.

The format parameter can either be 'short', 'medium',
'long' or 'full' (in which cause the language’s default for
that setting is used, or the default from the Babel.date_formats
mapping is used) or a format string as documented by Babel.

This function is also available in the template context as filter
named datetimeformat.

	
flask_babelplus.format_date(date=None, format=None, rebase=True)

	Return a date formatted according to the given pattern. If no
datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] or date [https://docs.python.org/3/library/datetime.html#datetime.date] object is passed,
the current time is assumed. By default rebasing happens which causes
the object to be converted to the users’s timezone (as returned by
to_user_timezone()). This function only formats the date part
of a datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] object.

The format parameter can either be 'short', 'medium',
'long' or 'full' (in which cause the language’s default for
that setting is used, or the default from the Babel.date_formats
mapping is used) or a format string as documented by Babel.

This function is also available in the template context as filter
named dateformat.

	
flask_babelplus.format_time(time=None, format=None, rebase=True)

	Return a time formatted according to the given pattern. If no
datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] object is passed, the current time is
assumed. By default rebasing happens which causes the object to
be converted to the users’s timezone (as returned by
to_user_timezone()). This function formats both date and
time.

The format parameter can either be 'short', 'medium',
'long' or 'full' (in which cause the language’s default for
that setting is used, or the default from the Babel.date_formats
mapping is used) or a format string as documented by Babel.

This function is also available in the template context as filter
named timeformat.

	
flask_babelplus.format_timedelta(datetime_or_timedelta, granularity='second', add_direction=False, threshold=0.85)

	Format the elapsed time from the given date to now or the given
timedelta.
This function is also available in the template context as filter
named timedeltaformat.

Gettext Functions

These are just shortcuts for the default Flask domain.

	
flask_babelplus.gettext()

	

Equivalent to Domain.gettext().

	
flask_babelplus.ngettext()

	

Equivalent to Domain.ngettext().

	
flask_babelplus.pgettext()

	

Equivalent to Domain.pgettext().

	
flask_babelplus.npgettext()

	

Equivalent to Domain.npgettext().

	
flask_babelplus.lazy_gettext()

	

Equivalent to Domain.lazy_gettext().

	
flask_babelplus.lazy_pgettext()

	

Equivalent to Domain.lazy_pgettext().

Low-Level API

	
flask_babelplus.refresh()

	Refreshes the cached timezones and locale information. This can
be used to switch a translation between a request and if you want
the changes to take place immediately, not just with the next request:

user.timezone = request.form['timezone']
user.locale = request.form['locale']
refresh()
flash(gettext('Language was changed'))

Without that refresh, the flash() [https://flask.palletsprojects.com/en/1.1.x/api/#flask.flash] function would probably
return English text and a now German page.

	
flask_babelplus.force_locale(*args, **kwds)

	Temporarily overrides the currently selected locale.
Sometimes it is useful to switch the current locale to
different one, do some tasks and then revert back to the
original one. For example, if the user uses German on the
web site, but you want to send them an email in English,
you can use this function as a context manager:

with force_locale('en_US'):
 send_email(gettext('Hello!'), ...)

	Parameters

	locale – The locale to temporary switch to (ex: ‘en_US’).

Additional Information

	Flask-BabelPlus Changelog
	Version 2.1.2

	Version 2.1.1

	Version 2.1.0

	Version 2.0.0

	Previous Versions

	License

	Search Page

Flask-BabelPlus Changelog

Version 2.2.0

Released on May 31th 2020.

	Dropped support for Python 2.7, 3.3 and 3.4

	Fixed a Babel deprecation warning for using format_numbers instead of
format_decimal

Version 2.1.2

Released on May 29th 2020.

	Fix werkzeug import error from werkzeug import ImmutableDict. PR #3.

Version 2.1.1

Released on October 8th 2017.

	Fix cache not being set on domain.

Version 2.1.0

Released on May 29th 2017.

	Add speaklater module from ‘Flask-Babel’, which in turn is forked from
‘mitsuhiko/speaklater’ that includes some improvements and fixes.

	Timezone and Locale selectors are overridable now.

Version 2.0.0

Released on May 15th 2017.

	Split the whole extension in multiple smaller files and
use a _BabelState object to safe the extensions state.

	It is no longer possible to use the formatting utilities without
and initialized Flask-BabelPlus object.

	Add force_locale function which can temporarily overrides the
currently selected locale.

Previous Versions

Prior to 1.6.0, no proper changelog was kept.

License

Copyright (c) 2016 by Peter Justin, Serge S. Koval, Armin Ronacher and
contributors.

Some rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution.

* The names of the contributors may not be used to endorse or
 promote products derived from this software without specific
 prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 f

 		 	

 		
 f	

 	
 	
 flask_babelplus	

Index

 A
 | B
 | D
 | F
 | G
 | I
 | L
 | N
 | P
 | R
 | T

A

 	
 	as_default() (flask_babelplus.Domain method)

B

 	
 	Babel (class in flask_babelplus)

D

 	
 	default_locale (flask_babelplus.Babel attribute)

 	
 	default_timezone (flask_babelplus.Babel attribute)

 	Domain (class in flask_babelplus)

F

 	
 	flask_babelplus (module)

 	force_locale() (in module flask_babelplus)

 	format_date() (in module flask_babelplus)

 	
 	format_datetime() (in module flask_babelplus)

 	format_time() (in module flask_babelplus)

 	format_timedelta() (in module flask_babelplus)

G

 	
 	get_locale() (in module flask_babelplus)

 	get_timezone() (in module flask_babelplus)

 	get_translations() (flask_babelplus.Domain method)

 	
 	get_translations_cache() (flask_babelplus.Domain method)

 	get_translations_path() (flask_babelplus.Domain method)

 	gettext() (flask_babelplus.Domain method)

 	(in module flask_babelplus)

I

 	
 	init_app() (flask_babelplus.Babel method)

L

 	
 	lazy_gettext() (flask_babelplus.Domain method)

 	(in module flask_babelplus)

 	lazy_pgettext() (flask_babelplus.Domain method)

 	(in module flask_babelplus)

 	
 	list_translations() (flask_babelplus.Babel method)

 	load_locale() (flask_babelplus.Babel method)

 	localeselector() (flask_babelplus.Babel method)

N

 	
 	ngettext() (flask_babelplus.Domain method)

 	(in module flask_babelplus)

 	
 	npgettext() (flask_babelplus.Domain method)

 	(in module flask_babelplus)

P

 	
 	pgettext() (flask_babelplus.Domain method)

 	(in module flask_babelplus)

R

 	
 	refresh() (in module flask_babelplus)

T

 	
 	timezoneselector() (flask_babelplus.Babel method)

 	
 	to_user_timezone() (in module flask_babelplus)

 	to_utc() (in module flask_babelplus)

 nav.xhtml

 Table of Contents

 		
 Flask-BabelPlus

 		
 Flask-BabelPlus Changelog

 		
 Version 2.1.2

 		
 Version 2.1.1

 		
 Version 2.1.0

 		
 Version 2.0.0

 		
 Previous Versions

 		
 License

_static/file.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/flask-babel.png
' Flask:2orel

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

